1,032 research outputs found

    The 3D soft X-ray cluster-AGN cross-correlation function in the ROSAT NEP survey

    Full text link
    X-ray surveys facilitate investigations of the environment of AGNs. Deep Chandra observations revealed that the AGNs source surface density rises near clusters of galaxies. The natural extension of these works is the measurement of spatial clustering of AGNs around clusters and the investigation of relative biasing between active galactic nuclei and galaxies near clusters.The major aims of this work are to obtain a measurement of the correlation length of AGNs around clusters and a measure of the averaged clustering properties of a complete sample of AGNs in dense environments. We present the first measurement of the soft X-ray cluster-AGN cross-correlation function in redshift space using the data of the ROSAT-NEP survey. The survey covers 9x9 deg^2 around the North Ecliptic Pole where 442 X-ray sources were detected and almost completely spectroscopically identified. We detected a >3sigma significant clustering signal on scales s<50 h70^-1 Mpc. We performed a classical maximum-likelihood power-law fit to the data and obtained a correlation length s_0=8.7+1.2-0.3 h_70-1 Mpc and a slope gamma=1.7$^+0.2_-0.7 (1sigma errors). This is a strong evidence that AGNs are good tracers of the large scale structure of the Universe. Our data were compared to the results obtained by cross-correlating X-ray clusters and galaxies. We observe, with a large uncertainty, that the bias factor of AGN is similar to that of galaxies.Comment: 4 pages, 2 figure, proceedings of the Conference "At the edge of the Universe", Sintra Portugal, October 2006. To be published on the Astronomical Society of the Pacific Conference Series (ASPCS

    The ROSAT North Ecliptic Pole Survey: The Optical Identifications

    Full text link
    The X-ray data around the North Ecliptic Pole (NEP) of the ROSAT All Sky Survey have been used to construct a contiguous area survey consisting of a sample of 445 individual X-ray sources above a flux of ~2x10^-14 erg cm^-2 s^-1 in the 0.5-2.0 keV energy band. The NEP survey is centered at RA (2000) = 18h 00m, DEC(2000) = +66deg 33arcmin and covers a region of 80.7 sq. deg at a moderate Galactic latitude of b = 29.8deg. Hence, the NEP survey is as deep and covers a comparable solid angle to the ROSAT serendipitous surveys, but is also contiguous. We have identified 99.6% of the sources and determined redshifts for the extragalactic objects. In this paper we present the optical identifications of the NEP catalog of X-ray sources including basic X-ray data and properties of the sources. We also describe with some detail the optical identification procedure. The classification of the optical counterparts to the NEP sources is very similar to that of previous surveys, in particular the Einstein Extended Medium Sensitivity Survey (EMSS). The main constituents of the catalog are active galactic nuclei (~49%), either type 1 or type 2 according to the broadness of their permitted emission lines. Stellar counterparts are the second most common identification class (~34%). Clusters and groups of galaxies comprise 14%, and BL Lacertae objects 2%. One non-AGN galaxy, and one planetary nebula have also been found. The NEP catalog of X-ray sources is a homogeneous sample of astronomical objects featuring complete optical identification.Comment: Accepted for publication in the ApJS; 33 pages including 12 postscript figures and 3 tables; uses emulateapj.sty. On-line source catalog at http://www.eso.org/~cmullis/research/nep-catalog.htm

    Literacy practices of primary education children in Andalusia (Spain): a family-based perspective

    Get PDF
    Primary school children develop literacy practices in various domains and situations in everyday life. This study focused on the analysis of literacy practices of children aged 8–12 years from the perspec- tive of their families. 1,843 families participated in the non-experimental explanatory study. The children in these families speak Spanish as a first language and are schooled in this language. The instrument used was a self-report questionnaire about children’s home-literacy practices. The data obtained were analysed using categorical principal components analysis (CATPCA) and analysis of variance (ANOVA). The results show the complex relationship between literacy practices developed by children in the domains of home and school and the limited development of a literacy-promoting ‘third space’. In conclusion, the families in our study had limited awareness of their role as literacy- promoting agents and thought of literacy learning as restricted to formal or academic spaces

    Evidence for Rapid Redshift Evolution of Strong Cluster Cooling Flows

    Full text link
    We present equivalent widths of the [OII] and Ha nebular emission lines for 77 brightest cluster galaxies (BCGs) selected from the 160 Square Degree ROSATROSAT X-ray survey. We find no [OII] or Ha emission stronger than -15 angstroms or -5 angstroms, respectively, in any BCG. The corresponding emission line luminosities lie below 6E40 erg/s, which is a factor of 30 below that of NGC1275 in the Perseus cluster. A comparison to the detection frequency of nebular emission in BCGs lying at redshifts above z = 0.35 drawn from the Brightest Cluster Survey (Crawford et al. 1999) indicates that we should have detected roughly one dozen emission-line galaxies, assuming the two surveys are selecting similar clusters in the X-ray luminosity range 10E42 erg/s to 10E45 erg/s. The absence of luminous nebular emission (ie., Perseus-like systems) in our sample is consistent with an increase in the number density of {\it strong} cooling flow (cooling core) clusters between z=0.5\rm z=0.5 and today. The decline in their numbers at higher redshift could be due to cluster mergers and AGN heating.Comment: Accepted for publication in Ap

    Redshift Evolution in the Iron Abundance of the Intracluster Medium

    Full text link
    Clusters of galaxies provide a closed box within which one can determine the chemical evolution of the gaseous baryons with cosmic time. We studied this metallicity evolution in the hot X-ray emitting baryons through an analysis of XMM-Newton observations of 29 galaxy clusters in the redshift range 0.3 < z < 1.3. Taken alone, this data set does not show evidence for significant evolution. However, when we also include a comparable sample of 115 clusters observed with Chandra (Maughan et al. 2008) and a lower redshift sample of 70 clusters observed with XMM at z < 0.3 (Snowden et al. 2008), there is definitive evidence for a decrease in the metallicity. This decrease is approximately a factor of two from z = 0 to z \approx 1, over which we find a least-squares best-fit line Z(z) / Z_{\odot} = (0.46 \pm 0.05) - (0.38 \pm 0.03)z. The greatest uncertainty in the evolution comes from poorly constrained metallicities in the highest redshift bin

    Evolution of the Cluster X-ray Luminosity Function

    Full text link
    We report measurements of the cluster X-ray luminosity function out to z=0.8 based on the final sample of 201 galaxy systems from the 160 Square Degree ROSAT Cluster Survey. There is little evidence for any measurable change in cluster abundance out to z~0.6 at luminosities less than a few times 10^44 ergs/s (0.5-2.0 keV). However, between 0.6 < z < 0.8 and at luminosities above 10^44 ergs/s, the observed volume densities are significantly lower than those of the present-day population. We quantify this cluster deficit using integrated number counts and a maximum-likelihood analysis of the observed luminosity-redshift distribution fit with a model luminosity function. The negative evolution signal is >3 sigma regardless of the adopted local luminosity function or cosmological framework. Our results and those from several other surveys independently confirm the presence of evolution. Whereas the bulk of the cluster population does not evolve, the most luminous and presumably most massive structures evolve appreciably between z=0.8 and the present. Interpreted in the context of hierarchical structure formation, we are probing sufficiently large mass aggregations at sufficiently early times in cosmological history where the Universe has yet to assemble these clusters to present-day volume densities.Comment: 15 pages, 10 figures, accepted for publication in Ap
    • …
    corecore